
LECTURE 7 Blast

Using BLAST to search sequence databases

- Aims
 - Learn how to use BLAST (blast.ncbi.nlm.nih.gov)
 BLASTP, BLASTN, TBLASTN, BLASTX
 - Learn what's in the NCBI sequence databases
 - Refseq
 - Accession numbers
 - Genome, WGS, single-gene, EST
 - Concept of annotation

What BLAST does

(BLAST was developed by Stephen Altschul et al, 1990. It is the most-cited scientific paper ever.)

BLAST looks for HSPs:

HSP: "High-Scoring Pair" = a grey region in the previous slide, i.e. a region of matching between your **Query** and a database entry (the **Subject**). HSPs usually don't have gaps in the alignment between Query and Subject, or have only small gaps.

A Query can have several HSPs to the same Subject.

For each Subject in the database (millions of them), BLAST asks:

Does the Subject match the Query with at least *k* identical letters?

(by default, "word size" *k* = 8 for DNA; *k* = 3 for protein)

If yes, BLAST then extends each *k*-matching region out as far as it can, to make an HSP. The HSP is given a **score**, which is:

for DNA, the score is just 2x the number of matching letters, minus gap penalties. for proteins, the score is calculated from a BLOSUM62 matrix.

What BLAST does

When a search is run, BLAST keeps a list of the database Subjects whose HSPs had the highest scores to your Query. (Typically 1000 are kept).

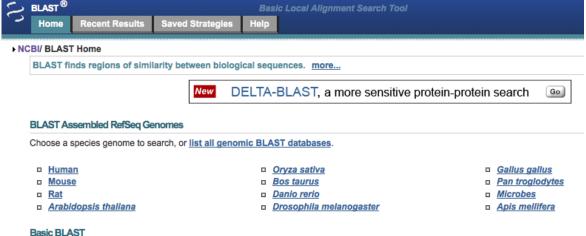
The **score** of each HSP in the list is then converted into an **E-value** ("expect" value). An E-value is the number of HSPs expected to have this score or higher, purely by chance, taking into account:

- the size of the database

- the composition of the Query (e.g. a query that is AAAAAAAAAA will have a lot of spurious hits).

Low E-values mean strong hits.

In theory, any HSP with E < 1 is significant. In practice, a hit is only "convincing" if E is 1×10^{-6} or lower. This is written as 1.0e-6.


The output from BLAST is a sorted list of the Subjects with the lowest E-values in the database. Note that

-- An E-value is not a probability.

-- In any search, <u>something</u> has to be the best hit. The trick is figuring out if the hit is a coincidence or due to shared ancestry (homology) of the sequences.

Exercise

- Find the sequences of EPO genes in as many different species as we can.
- By sequence similarity searching.
- Starting with human EPO:
 - Nucleotide database accession number X02157
 - Protein database accession number CAA26094

Choose a BLAST program to run.

\rightarrow	nucleotide blast	Search a nucleotide database using a nucleotide query <i>Algorithms:</i> blastn, megablast, discontiguous megablast
\rightarrow	protein blast	Search protein database using a protein query <i>Algorithms:</i> blastp, psi-blast, phi-blast, delta-blast
	blastx	Search protein database using a translated nucleotide query
	tblastn	Search translated nucleotide database using a protein query
	tblastx	Search translated nucleotide database using a translated nucleotide query

Specialized BLAST

Choose a type of specialized search (or database name in parentheses.)

- Make specific primers with <u>Primer-BLAST</u>
- Search trace archives
- Find conserved domains in your sequence (cds)
- Find sequences with similar conserved domain architecture (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search immunoglobulins (IgBLAST)
- Search using SNP flanks
- Screen sequence for vector contamination (vecscreen)
- Align two (or more) sequences using BLAST (bl2seq)
- Search protein or nucleotide targets in PubChem BioAssay
- Search SRA transcript and genomic libraries
- Constraint Based Protein Multiple Alignment Tool
- Needleman-Wunsch Global Sequence Alignment Tool
- Search RefSeqGene

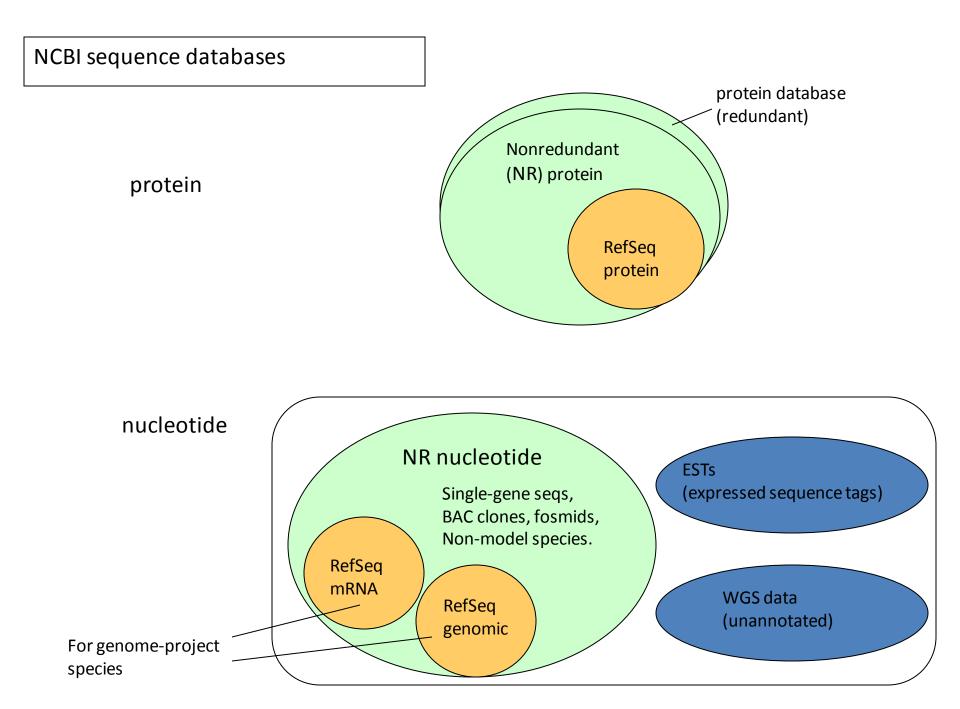
blast.ncbi.nlm.nih.gov

BLAST [®]	Basic Local Alignment Search	Tool
Home Recent	t Results Saved Strategies Help	
NCBI/ BLAST/ blastn	suite	Standard Nucleotide BLAST
blastn <u>blastp</u>	blastx tblastn tblastx	
Enter Query Seque	nce BLASTN programs s	earch nucleotide databases using a
	nber(s), gi(s), or FASTA sequence(s) 😡 Clear	Query subrange 😡
X02157		From
		То
Or, upload file		
Job Title	Browse) 😡	
JOD THE	Enter a descriptive title for your BLAST search ()	
☐ Align two or more		
Choose Search Set		
Database	OHuman genomic + transcript OMouse genomic + transcript Oot	ners (nr.etc.):
	(Human genomic plus transcript (Human G+T)	
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences	
Entrez Query Optional		
optional	Enter an Entrez query to limit search 🛞	
Program Selection		
Optimize for	O Highly similar sequences (megablast)	
	O More dissimilar sequences (discontiguous megablast)	
	Somewhat similar sequences (blastn) Choose a BLAST algorithm	
BLAST	Search database Human G+T using Blastn (Optimize for somewhat	t similar sequences)
+ Algorithm parameter	<u>rs</u>	

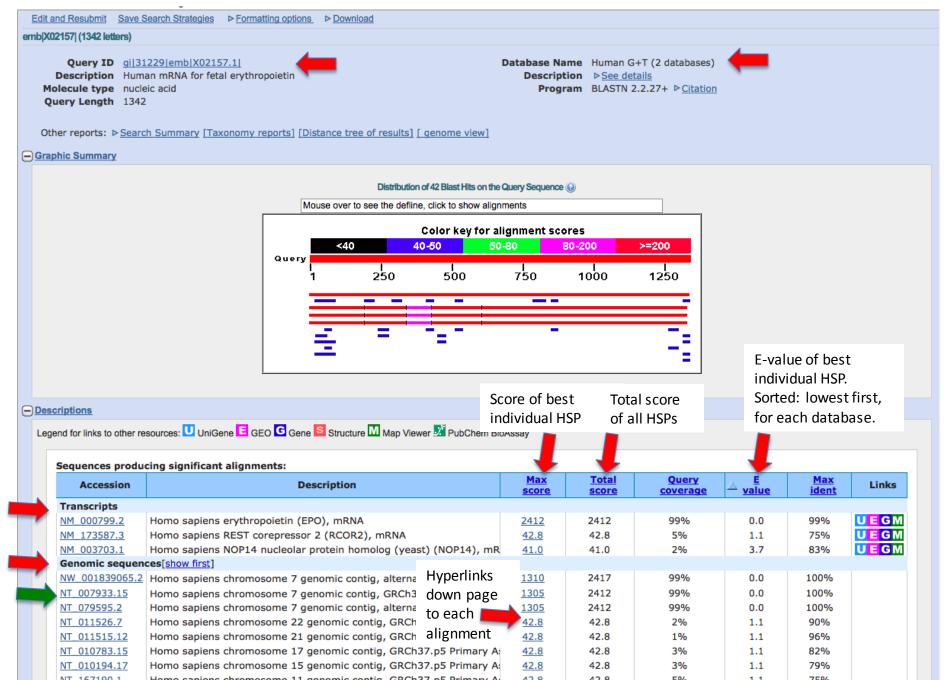
4 types of BLAST search: #1, BLASTN (≈megablast)

		Query				
		DNA	Protein			
Database	DNA	BLASTN megablast	TBLASTN			
	Protein	BLASTX	BLASTP			

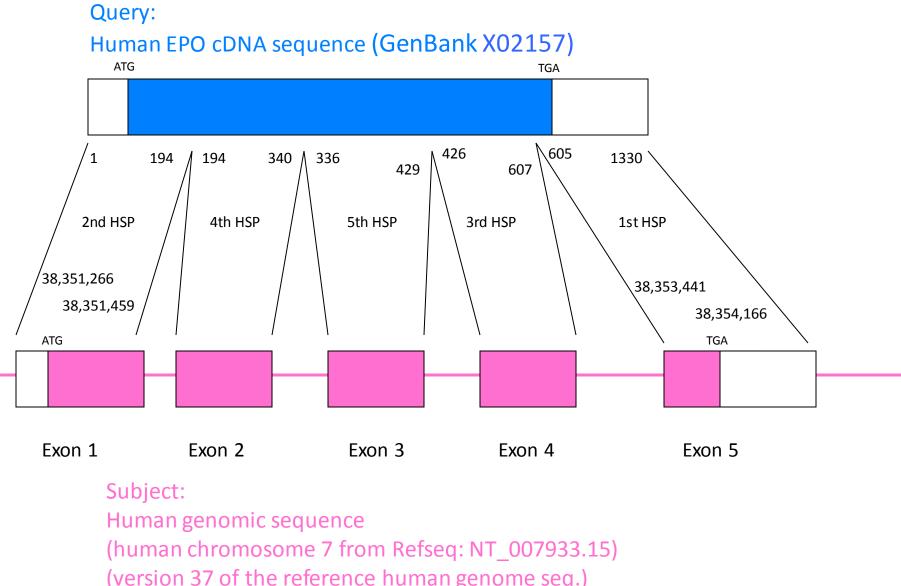
BLASTN: Searches a DNA Query vs. a DNA database.


Typical use: to find highly-similar DNA sequences.

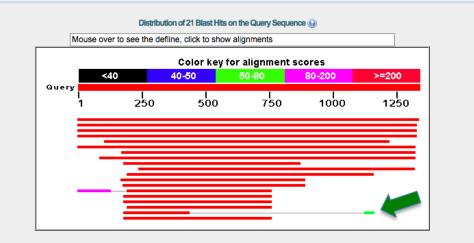
Advantages: It's the only option for sequences that are not protein-coding. Disadvantages:


- It will miss genes whose sequences have diverged a lot.
- Repetitive DNA sequences cause problems (e.g. human Alu repeats).

Nucleotide databases for BLAST (BLASTN, TBLASTN)


- Human Genomic + Transcript
- Mouse Genomic + Transcript
- Nucleotide collection (nr/nt) ("nonredundant nucleotide" db)
- Reference RNA sequences (refseq_RNA)
- Reference genomic sequences (refseq_genomic)
- Expressed sequence tags (EST)
- Whole genome shotgun contigs (WGS)
- and others...

Example: 1A: BLASTN: Query is human EPO cDNA. Database is Human Genomic + Transcript.



Example: 1A: One of the genomic hits from this search, marked by green arrow on previous slide

(version 37 of the reference human genome seq.)

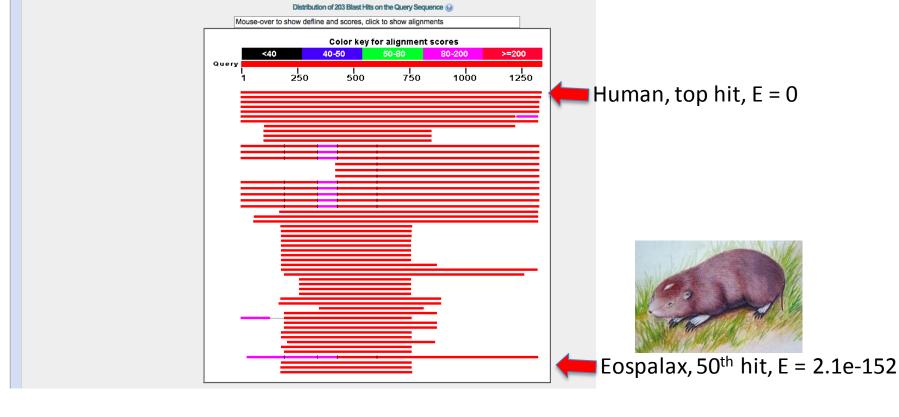
Example: 1B: BLASTN: Query is human EPO cDNA. Database is Refseq_RNA (=more species).

Descriptions

Legend for links to other resources: U UniGene 🖻 GEO G Gene S Structure M Map Viewer 📓 PubChem BioAssay

Accession	Description	<u>Max</u> score	<u>Total</u> <u>score</u>	Query coverage	<u>E</u> value	Max ident	Links
NM_000799.2	Homo sapiens erythropoietin (EPO), mRNA	2470	2470	99%	0.0	99%	UEGM
XM_003812904.1	PREDICTED: Pan paniscus erythropoietin (EPO), mRNA	2407	2407	99%	0.0	99%	G
XM_519268.2	PREDICTED: Pan troglodytes erythropoietin (EPO), mRNA	2401	2401	99%	0.0	99%	GM
KM_003278104.1	PREDICTED: Nomascus leucogenys erythropoietin-like (LOC10060743	<u>2141</u>	2141	99%	0.0	96%	GM
KM_003895802.1	PREDICTED: Papio anubis erythropoietin (EPO), mRNA	1688	1688	83%	0.0	94%	G
KM_003934171.1	PREDICTED: Saimiri boliviensis boliviensis erythropoietin (EPO), mRN/	<u>1642</u>	1642	98%	0.0	89%	G
M_001081825.1	Equus caballus erythropoietin (EPO), mRNA >dbj AB100030.1 Equus	1099	1099	86%	0.0	84%	UGM
M_214134.1	Sus scrofa erythropoietin (EPO), mRNA >emb AJ249745.1 Sus scrofa	<u>1051</u>	1051	92%	0.0	82%	UGM
MM_001042736.1	Macaca mulatta erythropoietin (EPO), mRNA >gb L10609.1 MACERYT	1007	1007	51%	0.0	93%	U G M
M_173909.2	Bos taurus erythropoietin (EPO), mRNA >gb U44762.1 BTU44762 Bos	<u>878</u>	878	80%	0.0	82%	UGM
NM_001006646.1	Canis lupus familiaris erythropoietin (EPO), mRNA >gb AY572971.1 (782	782	72%	0.0	82%	UEGN
NM_001009269.1	Felis catus erythropoietin (EPO), mRNA >gb U00685.1 FDU00685 Feli	776	776	54%	0.0	86%	G
XM_002927297.1	PREDICTED: Ailuropoda melanoleuca erythropoietin-like (LOC1004837	769	769	53%	0.0	86%	GM
KM_002743991.2	PREDICTED: Callithrix jacchus erythropoietin (EPO), mRNA	745	940	52%	0.0	93%	G
KM_003422486.1	PREDICTED: Loxodonta africana erythropoietin-like (LOC100676284),	627	627	43%	1e-176	86%	GM
MM_001024737.1	Ovis aries erythropoietin (EPO), mRNA >emb Z24681.1 O.aries eryth	<u>579</u>	579	43%	3e-162	85%	UG
KM_003798904.1	PREDICTED: Otolemur garnettii erythropoietin (EPO), m	562	562	42%	3e-157	A	G
(M_002817776.2	PREDICTED: Pongo abelii erythropoietin (EPO), mRNA	<u>451</u>	530	22%	7e-124	100%	G
KM_003470146.1	PREDICTED: Cavia porcellus erythropoietin-like (LOC100712648), mR	440	440	43%	2e-120	81%	GM

><u>ref!XM_002817776.2</u> G PREDICTED: Pongo abelii erythropoietin (EPO), mRNA Length=297


GENE ID: 100459890 EPO | erythropoietin [Pongo abelii]

Score = 451 bits (244), Expect = 7e-124 Identities = 254/259 (98%), Gaps = 0/259 (0%) Strand=Plus/Plus Sort alignments for this subject sequence b E value <u>Score Percent identity</u> <u>Query start position</u> <u>Subject start posit</u>

Query	182	ATGGGGGTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGCCCCC	241
Sbjct	1	ATGGGGGTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGTCGCTCCCT	60
Query	242	CTGGGCCTCCCAGTCCTGGGCGCCCCACCACGCCTCATCTGTGACAGCCGAGTCCTGGAG	301
Sbjct	61	CTGGGCCTCCCAGTCCTGGGCGCCCCACCACGCCTCATCTGTGACAGCCGAGTCCTGGAG	120
Query	302	AGGTACCTCTTGGAGGCCAAGGAGGCCGAGAATATCACGACGGGCTGTGCTGAACACTGC	361
Sbjct	121	AGGTACCTCTTGGAGGCCAAGGAGGCCGAGAATGTCACGACGGGCTGTGCCGAACACTGC	180
Query	362	AGCTTGAATGAGAATATCACTGTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGG	421
Sbjct	181	AGCTTGAGTGAGAATATCACCGTCCCAGACACCAAAGTTAACTTCTATGCCTGGAAGAGG	240
Query	422	ATGGAGGTCGGGCAGCAGG 440	
Sbjct	241	ATGGAGGTCGGGCAGCAGG 259	
Ident	ities	2.7 bits (42), Expect = 1e-11 = 42/42 (100%), Gaps = 0/42 (0%) s/Plus CAGGGACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGA 1166 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

NCBI/ BLAST/ blastn suite/ Formatting Results - 920RK1X8016
 Edit and Resubmit Save Search Strategies ▷ Formatting options ▷ Download
 emb[X02157] (1342 letters)
 Query ID gil31229[emb]X02157.1]
 Description Human mRNA for fetal erythropoietin Description Nucleotide collection (nt)
 Molecule type nucleic acid Program BLASTN 2.2.27+ ▷ Citation

Example: 1C: BLASTN: Query is human EPO cDNA. Database is NR (=lots of species).

M12930.1	mouse erythropoletin gene, complete cas	231	452	51%	∠e-58	83%
AY092019.3	Saguinus oedipus erythropoietin gene, partial cds	233	555	29%	2e-57	100th 👝

BLAST

Search database Nucleotide collection (nr/nt) using Blastn (Optimize for somewhat similar sequences)

	Show results in a new w	window.				
Algorithm parameters		Note: Paramete	er values that differ from the default are highlighted in yell	ow and marked	l with + sign	
General Parameters						
Max target sequences	ect the maximum number	of aligned seque	nces to display 😡			
Short queries 🗹 A	Automatically adjust paran	meters for short ir	nput sequences 😡			
Expect threshold 10	0					
Word size	1 🗘 🔞					
Max matches in a 0 query range	Ø					
Scoring Parameters						
Match/Mismatch 2,-	-3 🗘 😡					
Scores						
Gap Costs Ex	vistence: 5 Extension: 2	÷				
Filters and Machine						
Filters and Masking	M	12482.1	Maura anthropolatin and consolate		241	
_	Low complexity re	12930.1	Mouse erythropoietin gene, complete Mouse erythropoietin gene, complete cds	1	237	
	Species-specific re	(092019.1	Saguinus oedipus erythropoietin gene, partial cds	100th	233	
Mask 🗸 🗸		1971.1	M.musculus mRNA Epo (abnormal Epo allele)		187	
	viask for lookup ta	001371448.2	PREDICTED: Monodelphis domestica erythropoietin-like	(LOC1000181	167	
		087949.1	Physeter catodon clone EPO erythropoietin-like gene, pa	rtial sequence	158	
	DC	Q465472.1	Pantholops hodgsonii erythropoietin mRNA, partial cds		156	
	FJ	176349.1	Neophocaena phocaenoides erythropoietin-like (EPO)	ne nartial cor	149	
	AJ	278715.1	Cloning vector pAEC-SPE3, partial	107th	<u>147</u>	
	<u>JQ</u>	002761.1	Tursiops truncatus erythropoietin (EPO) gene, partial	10/11	86.0	

er							
	EF087949.1	Physeter catodon clone EPO erythropoietin-like gene, partial sequence	158	280	14%	1e-34	
	DQ465472.1	Pantholops hodgsonii erythropoietin mRNA, partial cds	156	156	10%	5e-34	
	FJ176349.1	Neophocaena phocaenoides erythropoietin-like (EPO) cone partial con	149	244	14%	7e-32	
	AJ278715.1	Cloning vector pAEC-SPE3, partial	147	147	6%	2e-31	
	JQ002761.1	Tursiops truncatus erythropoietin (EPO) gene, partial	86.0	132	7%	7e-13	
	AF202312.1	Homo sapiens erythropoietin (EPO) gene, exon 1	55.4	55.4	2%	0.001	
	AF202306.1	Homo sapiens erythropoietin (EPO) gene, exon 1 109th	55.4	55.4	2%	0.001	
	XM_002926807.1	PREDICTED: Ailuropoda melanoleuca tubulin beta-3 cl	48.2	48.2	3%	0.17	
	<u>X73471.1</u>	M.musculus 3'flanking region of gene for erythropoietin	48.2	48.2	3%	0.17	
	L13456.1	Mouse erythropoietin gene	48.2	48.2	3%	0.17	
	XM_001519767.2	PREDICTED: Ornithorhynchus anatinus frizzled-2-like (LOC100090775	46.4	46.4	3%	0.61	
	FR845719.1	Streptomyces venezuelae ATCC 10712 complete genome	46.4	46.4	3%	0.61	
	CR790366.19	Zebrafish DNA sequence from clone DKEY-245M3 in linkage group 5 C	46.4	46.4	1%	0.61	
	AK123083.1	Homo sapiens cDNA FLJ41088 fis, clone ASTRO2002459	46.4	46.4	1%	0.61	
	BC110175.1	Bos taurus cDNA clone IMAGE:8068452	46.4	46.4	2%	0.61	
	BX908798.1	Parachlamydia-related symbiont UWE25, complete genome	46.4	46.4	2%	0.61	
	CP002399.1	Micromonospora sp. L5, complete genome	44.6	44.6	3%	2.1	
	CP002162.1	Micromonospora aurantiaca ATCC 27029, complete genome	44.6	44.6	3%	2.1	
	AC134912.5	Mus musculus BAC clone RP23-162E15 from chromosome 14, complet	44.6	44.6	2%	2.1	

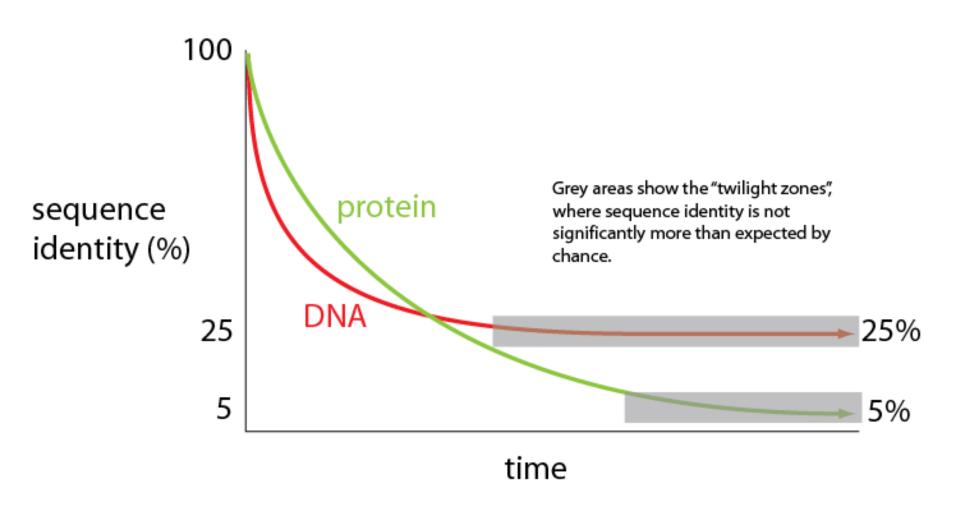
51%

51%

29%

23%

22%


1e-59

2e-58

2e-57

3e-43

3e-37

Protein databases for BLAST (BLASTP, BLASTX)

- Nonredundant protein sequences (nr)
- Reference proteins (refseq_protein)
- UniProtKB (Swiss-prot)
- Protein Databank proteins (pdb) ← with known 3D structures
- and others...

4 types of BLAST search: #2, BLASTP

		Query				
		DNA	Protein			
Database	DNA	BLASTN megablast	TBLASTN			
	Protein	BLASTX	BLASTP			

BLASTP: protein query vs. protein database.

Typical use: to find hits in <u>annotated</u> protein databases.

Advantages : Much more sensitive than BLASTN. Disadvantages : It will miss unannotated genes (they're not in protein database).

Example: 2: BLASTP: Query is human EPO protein. Database is NR proteins.

E-values. Sorted: lowest first.

	er Jen oberetur Friene echienel	<u></u>				20070
XP_001371485.2	PREDICTED: erythropoietin-like [Monodelphis domestica]	<u>171</u>	171	89%	3e-50	55%
XP_002817822.2	PREDICTED: erythropoietin [Pongo abelii]	140	140	49%	2e-39	89%
NP_001184210.1	erythropoietin precursor [Xenopus laevis] AI82351.1 erythrop	120	120	85%	7e-31	39%
NP_001233194.1	erythropoietin precursor [Xenopus (Silurana) tropicalis] >gb ADJ6800	<u>110</u>	110	93%	6e-27	37%
NP_001108599.1	erythropoietin isoform S [Danio rerio] >gb ABQ41210.1 erythropoiet	106	106	87%	1e-25	37%
<u>NP_001108600.1</u>	erythropoietin isoform L1 precursor [Danio rerio] >gb ABQ41209.1 e	106	106	92%	1e-25	37%
CAH39855.1	erythropoietin-I [Cyprinus carpio]	106	106	92%	2e-25	37%
NP_001033098.1	erythropoietin isoform L2 precursor [Danio rerio] >sp Q2XNF5.1 EPO_	106	106	92%	2e-25	37%
ABB83930.1	erythropoietin [Cyprinus carpio]	105	105	87%	7e-25	36%
ADD13992.1	erythropoietin, partial [Cyprinodon variegatus]	<u>101</u>	101	85%	8e-24	38%
Q5IGQ0.1	RecName: Full=Erythropoietin; Flags: Precursor >gb AAW29029.1 er	<u>99.4</u>	99.4	86%	8e-23	37%
XP_003457688.1	PREDICTED: erythropoietin-like [Oreochromis niloticus]	<u>98.2</u>	98.2	86%	3e-22	36%
Q4T554.1	RecName: Full=Erythropoietin; Flags: Precursor >emb CAF91978.1 u	97.1	97.1	90%	6e-22	37%
AAR25698.1	erythropoietin [Tetraodon nigroviridis]	97.1	97.1	86%	8e-22	38%
AAQ72466.1	erythropoietin brain specific isoform [Takifugu rubripes]	96.3	96.3	86%	1e-21	37%
Q6JV22.1	RecName: Full=Erythropoietin; Flags: Precursor >gb AAQ72467.1 er	<u>95.9</u>	95.9	86%	2e-21	37%
XP_001342254.1	PREDICTED: erythropoietin-like [Danio rerio]	94.0	94.0	83%	9e-21	36%
CAH39856.1	erythropoietin-II [Cyprinus carpio]	85.1	85.1	65%	7e-18	38%
ABB89952.1	erythropoietin [Oncorhynchus mykiss]	<u>84.3</u>	84.3	74%	1e-17	34%
AAB29659.1	erythropoietin, Epo {N-terminal} [rats, Wistar, blood, Peptide Partial,	77.0	77.0	25%	1e-15	78%
ABF01021.1	erythropoietin [Pantholops hodgsonii]	73.6	73.6	23%	2e-14	82%
ABD73008.1	erythropoietin, partial [Oryzias melastigma]	<u>75.1</u>	75.1	75%	3e-14	34%
AFH89746.1	erythropoietin, partial [Tursiops truncatus]	61.2	61.2	17%	4e-10	79%
CAA72707.1	erythropoietin [Mus musculus]	<u>53.9</u>	53.9	13%	2e-07	92%
NP_001001784.1	thrombopoietin per [Gallus gallus] >gb AAT45554.1 thrombopo	43.5	43.5	78%	0.011	24%
P42705.1	RecName: Full=Thrombopoietin; AltName: Full=C-MPL ligand; Short=	42.4	42.4	42%	0.045	31%
XP_003209225.1	PREDICTED: thrombopoietin-like [Meleagris gallopavo]	<u>39.7</u>	39.7	78%	0.23	23%

4 types of BLAST search: #3, BLASTX

		Query				
		DNA	Protein			
Database	DNA	BLASTN megablast	TBLASTN			
	Protein	BLASTX	BLASTP			

BLASTX: DNA query vs. protein database.

Typical use: What does this piece of DNA code for? e.g. an EST.

Advantages : Like BLASTP, but the Query doesn't need to be annotated. Disadvantages : It will miss unannotated genes (they're not in protein database).

6 reading frames:

6 ways that the same DNA sequence could potentially encode a protein

```
... S H L V E A L Y L V C G E R G F F... frame +1
...L T P G G S S L P S V R G T R L L ... frame +2
... H T W W K L S T * C A G N E A S ... frame +3
1 tcacacctggtggaagctctctacctagtgtgcggggaacgaggcttcttc 51
```

```
51 gaagaagcctcgttccccgcacactaggtagagagcttccaccaggtgtga 1
... E E A S F P A H * V E S F H Q V * ... frame -1
... K K P R S P H T R * R A S T R C ... frame -2
... R S L V P R T L G R E L P P G V ... frame -3
```


Bothrops alternatus (common pit viper)

What does the EST with accession number GW576306 code for?

Or GW576313 ?

Or GW576315 ?

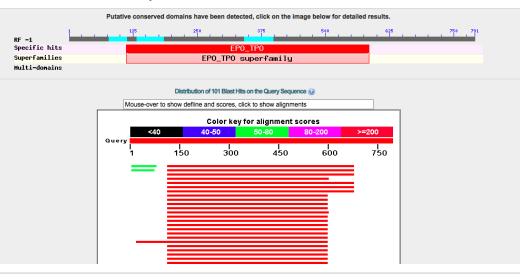
An EST (expressed sequence tag) is a single sequencing read from a random clone in a cDNA library = a randomly sampled mRNA.

 Query ID
 oil2895889611dblGW576306.11

 Description
 BACCGV3035B12.b
 Bothrops alternatus venom gland Bothrops alternatus cDNA clone BACCGV3035B12.

and such as a stand from the line second

 Database Name
 nr


 Description
 All non-redundant GenBank CDS translations+PDB+SwissProt+F environmental samples from WGS projects

 Program
 BLASTX 2.2.27+ ▷ Citation

Molecule type rna Query Length 791

E

Example: 3: BLASTX: Query is snake EST EPO GW576306. Database is NR proteins.

Accession	Description	Max score	Total score	Query coverage	🛆 <u>E value</u>
NP_031968.1	erythropoietin precursor [Mus musculus] >sp P07321.1 EPO_MOUSE RecName:	<u>337</u>	337	70%	5e-114
AAI44888.1	Epo protein [Mus musculus]	330	330	70%	2e-111
NP_058697.1	erythropoietin precursor [Rattus norvegicus] >sp P29676.1 EPO_RAT RecName:	320	320	70%	9e-108
AAA41126.1	erythropoietin, partial [Rattus norvegicus]	315	315	61%	1e-105
<pre>KP_003510685.1</pre>	PREDICTED: erythropoietin-like [Cricetulus griseus] >gb EGW06331.1 Erythrop	307	307	70%	2e-102
ABY56032.1	erythropoietin [Eospalax baileyi]	306	306	70%	3e-102
Q0Z956.1	RecName: Full=Erythropoietin; Flags: Precursor >gb ABG47336.1 erythropoiet	303	303	70%	8e-101
Q6H8T2.1	RecName: Full=Erythropoietin; Flags: Precursor >emb CAG29397.1 erythropoie	290	290	61%	1e-95
Q6H8S9.1	RecName: Full=Erythropoietin; Flags: Precursor >sp Q6H8T0.1 EPO_SPAJD Rec	288	288	61%	8e-95
BF01021.1	erythronojetin [Pantholons hodosonii]	71.2	71.2	17%	3e-13
	erythropoietin [Pantholops hodgsonii] erythropoietin [Mus musculus]	<u>71.2</u> 62.8	71.2	17% 19%	3e-13 3e-10
CAA72707.1	erythropoietin [Mus musculus]	62.8	62.8	19%	3e-10
CAA72707.1 AFH89746.1	erythropoietin [Mus musculus] erythropoietin, partial [Tursiops truncatus]	<u>62.8</u> 62.0	62.8 62.0		3e-10 6e-10
ABF01021.1 CAA72707.1 AFH89746.1 AAL59385.1 ACE77052.1	erythropoietin [Mus musculus]	62.8	62.8	19% 12%	3e-13 3e-10 6e-10 3e-08 2e-07

4 types of BLAST search: #4, TBLASTN

		Query	
		DNA	Protein
Database	DNA	BLASTN megablast	TBLASTN
	Protein	BLASTX	BLASTP

TBLASTN: Searches a protein query vs. DNA database.

Typical use: Can I find any new homologs of my gene?

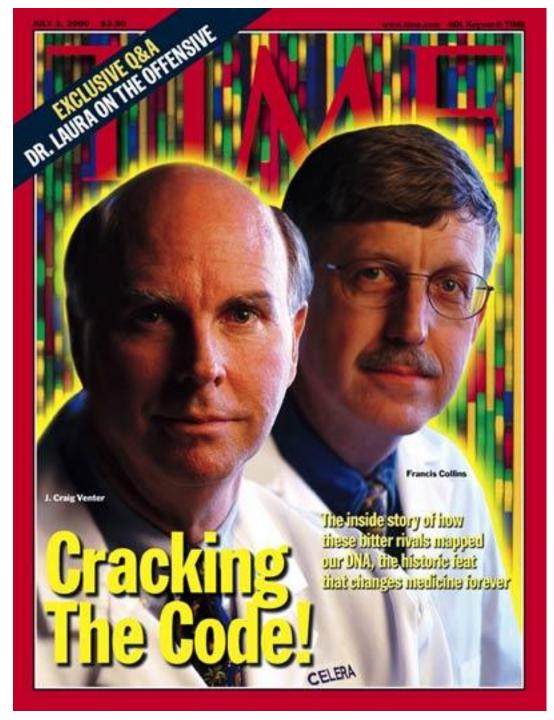
Advantages : Like BLASTP, but the database entry doesn't need to be annotated. Disadvantages : Your query needs to be a protein.

4 types of BLAST search: #5, TBLASTX

		Query		
		DNA	Protein	
Database	DNA	BLASTN TBLASTX	TBLASTN	
	Protein	BLASTX	BLASTP	

TBLASTX: DNA query vs. DNA database, 6-frame translations.

(Comparing all proteins that could possibly be encoded by the Query, to all proteins that could possibly be encoded by each sequence in the database.)


Typical use: I'm desperate!

Advantages: Query and database can both be unannotated.

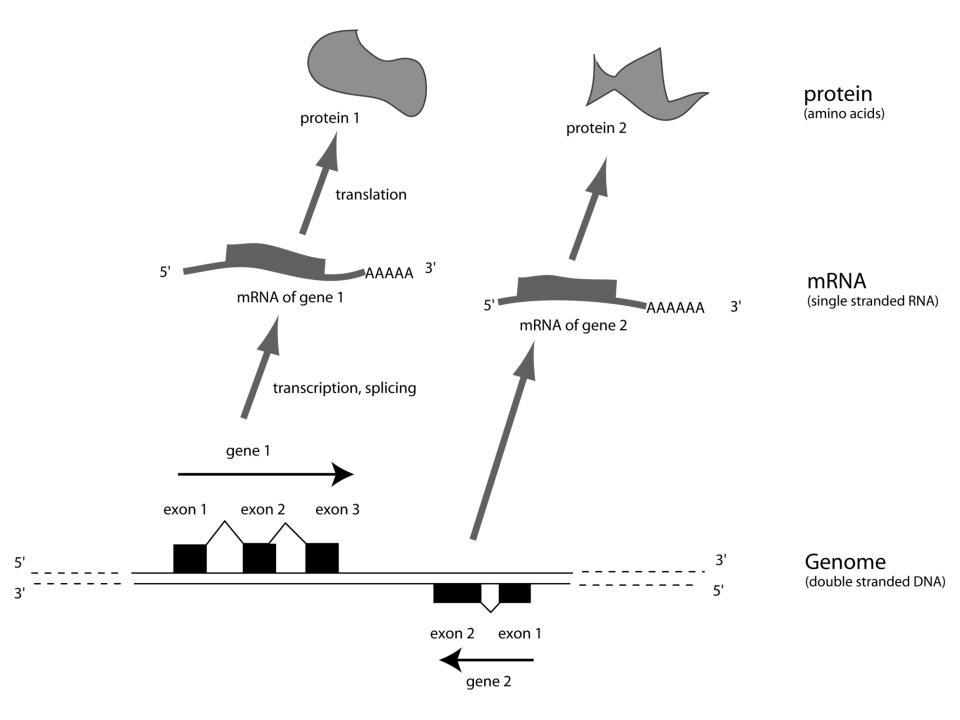
Disadvantages: Dreadfully slow. TBLASTX searches against most databases are banned on the NCBI server. Results can be hard to interpret.

J. Craig Venter

Celera Genomics

Francis Collins

Intl. Human Genome Sequencing Consortium


2001

Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project

Mark D. Adams, Jenny M. Kelley, Jeannine D. Gocayne, Mark Dubnick, Mihael H. Polymeropoulos, Hong Xiao, Carl R. Merril, Andrew Wu, Bjorn Olde, Ruben F. Moreno, Anthony R. Kerlavage, W. Richard McCombie, J. Craig Venter*

Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

EST category	Hippocampus		
Database match—human			
Mitochondrial genes	48	(12.8)	
Repeated sequences	39	(10.4)	
Ribosomal RNA	10	(2.7)	
Other nuclear genes	32	(8.6)	
Database match-other	32	(8.6)	
No database match	160	(42.8)	
Polyadenylate insert	53	(14.1)	
No insert	1	(0.3)	

RESEARCH

Generation and Analysis of 280,000 Human Expressed Sequence Tags

LaDeana Hillier,^{1,4} Greg Lennon,² Michael Becker,¹ M. Fatima Bonaldo,³ Brandi Chiapelli,¹ Stephanie Chissoe,¹ Nicole Dietrich,¹ Treasa DuBuque,¹ Anthony Favello,¹ Warren Gish,¹ Maria Hawkins,¹ Monica Hultman,¹ Tamara Kucaba,¹ Michelle Lacy,¹ Maithao Le,¹ Nha Le,¹ Elaine Mardis,¹ Bradley Moore,¹ Matthew Morris,¹ Jeremy Parsons,¹ Christa Prange,³ Lisa Rifkin,¹ Theresa Rohlfing,¹ Kurt Schellenberg,¹ M. Bento Soares,² Fang Tan,¹ Jean Thierry-Meg,¹ Evanne Trevaskis,¹ Karen Underwood,¹ Patricia Wohldman,¹ Robert Waterston,¹ Richard Wilson,¹ and Marco Marra¹

¹Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri 63108; ²Human Genome Center, Lawrence Livermore National Laboratories, Livermore, California 94550; ³Department of Psychiatry, College of Physicians and Surgeons of Columbia University, and the New York State Psychiatric Institute, New York, New York 10032

We report the generation of 319,311 single-pass sequencing reactions (known as expressed sequence tags, or ESTs) obtained from the 5' and 3' ends of 194,031 human cDNA clones. Our goal has been to obtain tag sequences from many different genes and to deposit these in the publicly accessible Data Base for Expressed Sequence Tags. Highly efficient automatic screening of the data allows deposition of the annotated sequences